wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

nnn(n1)n+n(n1)2!(n2)n...=3a×n!.

Find a

Open in App
Solution

We have

ex=1+x1!+x22!+x33!+x44!+...


ex1=x(11!+x2!+x23!+x34!+...)

(ex1)n=xn(11!+x2!+x23!+x34!+...)n

=xn+ terms containing higher power of x ...(1)

Using binomial theorem, we get

(ex1)n=enxnC1e(n1)x+nC2e(n2)x...


=[1+(nx)+(nx)22!+...+(nx)nn!+...]n[1+(n1)x+(n1)2x22!+...+(n1)nxnn!+...]+n(n1)2![1+(n2)x+(n2)2x22!+...+(n2)nxnn!+...]+.....

Above is eq (2).

Equating the coefficient of xn in (1) & (2), we get

nnn!n(n1)nn!+n(n1)2!(n2)nn!...=1

or nnn(n1)n+n(n1)2!(n2)n...=n!

a=3


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Theoretical Probability
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon