nn−n(n−1)n+n(n−1)2!(n−2)n−...∞=3a×n!.
Find a
We have
ex=1+x1!+x22!+x33!+x44!+...
⇒
ex−1=x(11!+x2!+x23!+x34!+...)
∴ (ex−1)n=xn(11!+x2!+x23!+x34!+...)n
=xn+ terms containing higher power of x ...(1)
Using binomial theorem, we get
(ex−1)n=enx−nC1e(n−1)x+nC2e(n−2)x−...∞
=[1+(nx)+(nx)22!+...+(nx)nn!+...]−n[1+(n−1)x+(n−1)2x22!+...+(n−1)nxnn!+...]+n(n−1)2![1+(n−2)x+(n−2)2x22!+...+(n−2)nxnn!+...]+.....
Above is eq (2).
Equating the coefficient of xn in (1) & (2), we get
nnn!−n(n−1)nn!+n(n−1)2!(n−2)nn!−...=1
or nn−n(n−1)n+n(n−1)2!(n−2)n−...=n!
∴a=3