The correct option is
A e(e2−1)∫21ex(1x−1x2)dx
∫exxdx−∫ex1x2dx
Using Integration by parts we get
1x∫exdx−(∫(ddx−1x∫exdx)dx)−∫exx2dx
=exx−(∫−1x2exdx)−∫exx2dx
=exx+∫exx2dx−∫exx2dx
=exx
Evaluating the above integral over limits 1 to 2 we get
exx|21=e22−e=e(e2−1)
∴∫21ex(1x−1x2)dx=e(e2−1)