∫π40sinx+cosx9+16sin2xdx
substitute t=sinx−cosx⇒1−t2=sin2x→dt=(sinx+cosx)dx
x(0,π4)→t(−1,0)
∴∫π40sinx+cosx9+16sin2xdx=∫0−1dt9+16(1−t2)
=∫0−1dt9+16−16t2
=∫0−1dt25−16t2
=∫0−1dt(5)2−(4t)2
=1412(5)[log(5+4t5−4t)]0−1
=140[log(1)−log19]
=140log9