sin36osin72osin108osin144o=sin36osin72osin(90o+18o)sin(90o+34o)=sin36osin72ocos18ocos54o
=14(2sin36ocos54o)(2sin72ocos18o)
=14(cos(36o−54o)−cos(36o+54o))(cos(72o−18o)−cos(72o+18o))
=14(cos18o−cos90o)(cos54o−cos90o)
=14cos18ocos54o=14⎛⎝√58+√58⎞⎠⎛⎝√58−√58⎞⎠=516