wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

sinπ14sin3π14sin5π14sin7π14sin9π14sin11π14sin13π14 is equal to

Open in App
Solution

sin(π14)sin(3π14)sin(5π14)sin(7π14)sin(9π14)sin(11π14)sin(13π14)

sinθ=sin(πθ)

sin(9π14)=sin(π9π14)=sin(5π14)

sin(11π14)=sin(3π14) and sin(13π14)=sin(π14)

Expression reduces to

sin2(π14).sin2(3π14)sin2(5π14).sin(π2)

sinθ=cos(90θ)

(cos3π7.cos2π7.cosπ7)2×4sin2(π7)4sin2π7

=14sin2(π7)(4sin2π7cos2π7.cos22π7cos23π7)

[2sin(π7)cos(π7)=sin(2π7)]

14sin2(π7)[44sin22π7cos22π7.cos2(π3π7)]

[cos2(πθ)cos2θ]

=116sin2(π7)[44sin2(4π7)cos2(4π7)]

=116sin2(π7)sin2(8π7)

[sin2(8π7)=sin2(π+π7)]

=sin2(π7)

=164sin2(π7)

=164.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon