Let
A=yzx√x2+y2+z2,B=zxy√x2+y2+z2,C=xyz√x2+y2+z2
then ,
⇒tan−1A+tan−1B+tan−1C
tan−1(A+B1−AB)+tan−1C
⇒tan−1(A+B1−AB+C1−(A+B)C1−AB)
⇒tan−1(A+B+C−ABC1−(AB+BC+CA))
AB=z2x2+y2+z2
BC=x2x2+y2+z2
CA=y2x2+y2+z2
⇒AB+BC+CA=1
Denominator =1−1=0
tan−1(∞)=π2