The correct option is B 3
∑∞k=16k(32k+1+22k+1)−(3k2k+1+2k3k+1)=∑∞k=16k3⋅32k−3⋅3k2k+2222k−2⋅3k2k=∑∞k=16k3⋅3k(3k−2k)−2⋅2k(3k−2k)=∑∞k=16k(3k−2k)(3k+1−2k+1)6k(3k−2k)(3k+1−2k+1)=3kA(3k−2k)+3kB(3k+1−2k+1)6k(3k−2k)(3k+1−2k+1)=(3A+B)32kB−(2A+B)6k(3k−2k)(3k+1−2k+1)3A+B=0⇒3A=−B(1)2A+B=−12A−3A=−1from(1)−A=−1A=1⇒B=−3A=−3∑∞k=16k(3k−2k)(3k+1−2k+1)=∑3k(3k−2k)−∑3k+1(3k+1−2k+1)T1=33−2−3232−22T2=3232−22−3333−23Tn=3k(3k−2k)−3k+1(3k+1−2k+1)Sn=3−3n+13n+1−2n+1limn→∞Sn=3