n∑m−1tan−1(2mmv+m2+2) is equal to
tan−1(n2+nn2+n+2)
n∑m1tan−12mm4+m2+2=n∑m−1tan−1(2m1+(m2+m+1)(m2−m+1))
=n∑m−1tan−1((m2+m+1)−(m2−m+1)1+(m2+m+1)(m2−m+1))
=∑m−1n[tan−1(m2+m+1)−tan−1(m2−m+1)]
=(tan−13−tan−1 1)+(tan−17−tan−1 3)+(tan−113−tan−17)+ ⋮ ⋮+[tan−1(n2+n+1)−tan−1(n2−n+1)
=tan−1(n2+n+1)−tan−1 1=tan−1(n2+n2+n2+n)