The correct option is A 12n−1
n∑r=0(−1)r nCr(12)r=(1−12)n=(12)n
n∑r=0(−1)r nCr(34)r=(1−34)n=(14)n
n∑r=0(−1)r nCr(78)r=(1−78)n=(18)n
⋮
and so on.
∴n∑r=0(−1)r nCr[12r+3r22r+7r23r+⋯∞]
=(12)n+(14)n+(18)n+⋯∞
=12n+122n+123n+⋯∞
Above series is a G.P. with a=r=12n
So, sum =12n1−12n [∵S∞=a1−r]
=12n−1