The correct option is A tan−1(n2+nn2+n+2)
We have,
n∑m=1tan−1(2mm4+m2+2)
=n∑m=1tan−1[2m1+(m2+m+1)(m2−m+1)]
=n∑m=1tan−1[(m2+m+1)−(m2−m+1)1+(m2+m+1)(m2−m+1)]
=n∑m=1{tan−1[m2+m+1]−tan−1[m2−m+1]}
=tan−13−tan−11+tan−17−tan−13+(tan−113−tan−17)+...+tan−1(n2+n+1)−tan−1(n2−n+1)
=tan−1(n2+n+1−11+(n2+n+1)⋅1)=tan−1(n2+n2+n2+n)