The correct option is C tan−1(n2+nn2+n+2)
n∑m=1tan−12m1+(m2+m+1)(m2−m+1)
n∑m=1tan−1m2+m+1−(m2−m+1)1+(m2+m+1)(m2−m+1)
=n∑m=1(tan−1(m2+m+1)−tan−1(m2−m+1))
=(tan−13−tan−11)+(tan−17−tan−13)+...+(tan−1(n2+n+1)−tan−1(n2−n+1))
We can observe that this forms a telescopic series since (m2+m+1=(m+1)2−(m+1)+1)
S=tan−1(n2+n+1)−tan−1(1)
S=tan−1(n2+nn2+n+2)