The correct option is B 1(k−1).k!
The series:
12.3.4...(k+1)+13.4.5...(k+2)+14.5.6...(k+3)+...∞=1k−1.[((k+1)−22.3.4...(k+1))+((k+2)−33.4.5...(k+2))+...∞]=1k−1.[(12.3...k−13.4...(k+1))+(13.4...(k+1)−14.5...(k+2))+...∞]=1k−1.(12.3...k)=1(k−1)k!
Hence, (C) is correct.