n∑k=0Ckk+1=2n+1−1n+1
We know that :
(1+x)n=nC0+nC1x1+nC2x2+nC3x3+...+nCnxn....1
Integrating equation 1 between 0 ad 1 w.r.t. x
∴∫10(1+x)ndx=∫10nC0+nC1x+nC2x2+...+nCnxn
[(1+x)n+1n+1]10=nC0+nC12+nC23+...+nCnn+1−0
2n+1n+1−1n+1=nC0+nC12+nC23+...+nCnn+1
i.e [n∑k=0nCkk+1]=2n+1n+1−1
Hence proved.
*Tip: Always go for basic expand.
(1+x)n,(1+x)−n,(1−x)n,(1−x)−n