The correct option is
C 48(1−i)10∑q=1(sin2qπ11−isin2qπ11)={sin2π11+sin4π11+...+10}−i{cos2π11+cos4π11+...+10}
=sin(2π11+9π11)sin10π11sinπ11−icos(2π11+9π11)sin10π11sinπ11=0−i(−1)=i ...(1)
∴S=32∑p=1(3q+2)[10∑q=1(sin2qπ11−icos2qπ11)]p
=32∑p=1(3p+2)ip=332∑p=1pip+232∑p=1ip=3A+2B ...(2)
Now, A=i+2i2+3i3+...+32i32⇒Ai=i2+2i3+...+31i32+32i33
⇒A(1−i)=i+i2+...+i32−32i33=i32−1i−1−32i=−32i[∵i32=1]
∴A=−32i1−i=32(1+i)2=16(1−i) ...(3)
and, B=i+i2+...+i32=0 ...(4)
Hence, S=3×16(1−i)=48(1−i).