The correct option is
A n+m+1Cn+1Since nCr=nCn−r
and nCr−1+nCr=n+1Cr, we have
m∑r=0 n+rCn = m∑r=0 n+rCr = nC0+n+1C1+n+2C2+.......+n+mCm
=[1+(n+1)]+n+2C2+n+3C3+.......+n+mCm
= (n+1C1+n+2C2)+n+3C3+.......+n+mCm
= ∵n+2=n+1C1 or nC1=n
= (n+3C2+n+3C3)+.......+n+mCm
= (n+4C3+n+4C4)+.......+n+mCm
...........................................................................................
...........................................................................................
= n+mCm−1+n+mCm
=n+m+1Cm=n+m+1Cn+1 [∵nCr=nCn−r]