1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Basic Inverse Trigonometric Functions
∑ r=1 n tan -...
Question
n
∑
r
=
1
t
a
n
−
1
(
2
r
−
1
1
+
2
2
r
−
1
)
is equal to :
A
t
a
n
−
1
(
2
n
)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
t
a
n
−
1
(
2
n
)
−
π
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
t
a
n
−
1
(
2
n
+
1
)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
t
a
n
−
1
(
2
n
+
1
)
−
π
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
A
t
a
n
−
1
(
2
n
)
n
∑
r
=
1
tan
−
1
(
2
r
−
1
1
+
2
2
r
−
1
)
=
n
∑
r
=
1
tan
−
1
(
2
r
−
1
(
2
−
1
)
1
+
2
r
.2
r
−
1
)
=
n
∑
r
=
1
tan
−
1
(
2
r
−
2
r
−
1
1
+
2
r
.2
r
−
1
)
=
n
∑
r
=
1
tan
−
1
2
r
−
tan
−
1
(
2
r
−
1
)
=
tan
−
1
2
−
tan
−
1
1
+
tan
−
1
2
2
−
tan
−
1
2
1
+
⋯
+
tan
−
1
2
n
−
tan
−
1
2
n
−
1
=
tan
−
1
(
2
n
)
−
π
4
Suggest Corrections
0
Similar questions
Q.
∑
n
r
=
1
t
a
n
−
1
(
2
r
−
1
1
+
2
2
r
−
1
)
is equal to
Q.
Sum the following series:
tan
-
1
1
3
+
tan
-
1
2
9
+
tan
-
1
4
33
+
.
.
.
+
tan
-
1
2
n
-
1
1
+
2
2
n
-
1
Q.
Find the sum of the following series:
tan
−
1
1
3
+
tan
−
1
2
9
+
tan
−
1
4
33
+
.
.
.
.
+
tan
−
1
2
n
−
1
1
+
2
2
n
−
1