wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

limxπ/2tan2x[(2sin2x+3sinx+4)1/2(sin2x+6sinx+2)1/2] is 1m Find m

Open in App
Solution

Put x=π2 in tan2x[(2sin2x+3sinx+4)12(sin2x+6sinx+2)12]
=tan2π2(2sin2π2+3sinπ2+4)12(sin2π2+6sinπ2+2)12
=[(2+3+4)12(1+6+2)12]
=[(9)12(9)12]
=×0 is an indeterminate form
Consider tan2x[(2sin2x+3sinx+4)12(sin2x+6sinx+2)12]
=tan2x⎢ ⎢ ⎢ ⎢((2sin2x+3sinx+4)12(sin2x+6sinx+2)12)((2sin2x+3sinx+4)12+(sin2x+6sinx+2)12)(2sin2x+3sinx+4)12+(sin2x+6sinx+2)12⎥ ⎥ ⎥ ⎥
=tan2x2sin2x+3sinx+4sin2x6sinx22sin2x+3sinx+4+sin2x+6sinx+2
=tan2xsin2x3sinx+22sin2x+3sinx+4+sin2x+6sinx+2
limxπ2tan2x[(2sin2x+3sinx+4)12(sin2x+6sinx+2)12]
=limxπ2tan2xsin2x3sinx+22sin2x+3sinx+4+sin2x+6sinx+2
=limxπ2tan2xsin2x3sinx+22sin2π2+3sinπ2+4+sin2π2+6sinπ2+2
=limxπ2tan2xsin2x3sinx+22+3+4+1+6+2
=limxπ2tan2xsin2x2sinxsinx+29+9
=limxπ2tan2xsinx(sinx2)1(sinx2)9+9
=limxπ2tan2x(sinx2)(sinx1)3+3
=limxπ2tan2x(sinx2)(sinx1)6
Put x=π2+h for h0
=limh0tan2(π2+h)(sin(π2+h)2)1(sin(π2+h)1)6
=limh0cot2h(cosh2)(cosh1)6
=limh0(cosh2)(cosh1)6tan2h
=limh0(cosh2)(cosh1)6h2tan2hh2
=limh0(cosh2)(cosh1)6h2
By using L'Hospitals Rule we get
=limh0(cosh2)(sinh)+(cosh1)(sinh)12h
=limh0sinh(cosh2+cosh1)12h
=limh0sinh(2cosh3)12h
=limh0(2cosh3)12
=212+312=112
1m=112
m=12

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Fundamental Theorem of Calculus
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon