Put x=π2 in tan2x[(2sin2x+3sinx+4)12−(sin2x+6sinx+2)12]
=tan2π2⎡⎣(2sin2π2+3sinπ2+4)12−(sin2π2+6sinπ2+2)12⎤⎦
=∞[(2+3+4)12−(1+6+2)12]
=∞[(9)12−(9)12]
=∞×0 is an indeterminate form
Consider tan2x[(2sin2x+3sinx+4)12−(sin2x+6sinx+2)12]
=tan2x⎡⎢
⎢
⎢
⎢⎣((2sin2x+3sinx+4)12−(sin2x+6sinx+2)12)((2sin2x+3sinx+4)12+(sin2x+6sinx+2)12)(2sin2x+3sinx+4)12+(sin2x+6sinx+2)12⎤⎥
⎥
⎥
⎥⎦
=tan2x2sin2x+3sinx+4−sin2x−6sinx−2√2sin2x+3sinx+4+√sin2x+6sinx+2
=tan2xsin2x−3sinx+2√2sin2x+3sinx+4+√sin2x+6sinx+2
limx→π2tan2x[(2sin2x+3sinx+4)12−(sin2x+6sinx+2)12]
=limx→π2tan2xsin2x−3sinx+2√2sin2x+3sinx+4+√sin2x+6sinx+2
=limx→π2tan2xsin2x−3sinx+2√2sin2π2+3sinπ2+4+√sin2π2+6sinπ2+2
=limx→π2tan2xsin2x−3sinx+2√2+3+4+√1+6+2
=limx→π2tan2xsin2x−2sinx−sinx+2√9+√9
=limx→π2tan2xsinx(sinx−2)−1(sinx−2)√9+√9
=limx→π2tan2x(sinx−2)(sinx−1)3+3
=limx→π2tan2x(sinx−2)(sinx−1)6
Put x=π2+h for h→0
=limh→0tan2(π2+h)(sin(π2+h)−2)1(sin(π2+h)−1)6
=limh→0cot2h(cosh−2)(cosh−1)6
=limh→0(cosh−2)(cosh−1)6tan2h
=limh→0(cosh−2)(cosh−1)6h2tan2hh2
=limh→0(cosh−2)(cosh−1)6h2
By using L'Hospitals Rule we get
=limh→0(cosh−2)(−sinh)+(cosh−1)(−sinh)12h
=limh→0−sinh(cosh−2+cosh−1)12h
=limh→0−sinh(2cosh−3)12h
=limh→0−(2cosh−3)12
=−212+312=112
⇒1m=112
∴m=12