limx→1(1+cosπxtan2πx)
We have,
limx→1(1+cosπxtan2πx)
This is the 00 form.
So, apply L-hospital rule
limx→1(0−sinπx(π)2tanπx(sec2πx)(π))
limx→1(−sinπxcos2πx2tanπx)
limx→1⎛⎜ ⎜ ⎜⎝−sinπxcos2πx2sinπxcosπx⎞⎟ ⎟ ⎟⎠
limx→1(−cos3πx2)
=−(cosπ)32
=−(−1)32
=12
Hence, this is the answer.