The correct option is B e−x2/2y2=ky
Given, dydx=xyx2−y2
Let y=vx
Then dydx=v+xdvdx
Hence, v+xdvdx=vx2x2−vx2
xdvdx=v1−v2−v
xdvdx=v−v+v31−v2
xdvdx=v31−v2
1−v2v3.dv=dxx
v−3−1v.dv=1xdx
∫v−3−1v=∫dxx
−v−22−lnv=lnx+lnC
−v−22=lnv+lnx+lnC
−v−22=lncvx
e−12v2=cvx
Now y=vx
Hence, e−x22y2=cy.