The correct option is A loge⎡⎢⎣(1+x)1−x2(1−x)1+x2⎤⎥⎦
Consider loge⎡⎢⎣(1+x)1−x2(1−x)1+x2⎤⎥⎦
=(1−x)2loge(1+x)−(1+x)2loge(1−x)
=12[loge(1+x)−loge(1−x)]−x2[loge(1+x)+loge(1−x)]
=(x+x33+x55+.....)+x(x22+x44+.....)
=(x+x33+x55+.....)+(x32+x54+.....)
=x+5x32.3+9x54.5+13x76.7+...to∞