wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

xlim0f(4x)3f(3x)+f(2x)+f(x)x3=12
f(x)=0 and f′′(x)=0. Then find f′′′(0)

Open in App
Solution

limx0f(4x)3f(3x)+f(2x)+f(x)x3=12
Consider the L.H.S
=limx0f(4x)3f(3x)+f(2x)+f(x)x3
Putting the limits we get 00 form, Hence using L' Hospitals rule
=limx04f(4x)9f(3x)+2f(2x)+f(x)3x2=limx016f′′(4x)27f′′(3x)+4f′′(2x)+f′′(x)6x=limx064f′′′(4x)81f′′′(3x)+8f′′′(x)+f′′′(x)6
Putting the limits
=8f′′′(0)6
Equating LHS with RHS we get
8f′′′(0)6=12
f′′′(0)=9

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definition of Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon