It is easy to observe that
x2−y2x−y=x+y,
x3−y3x−y=x2+xy+y2 ,etc.
xn−ynx−y=xn−1+xn−1+xn−2y+....+xyn−2+yn−1
L.H.S.=1x−y[(x2−y2)+(x3−y3)+.....nterms]=1x−y[S1+S2ofaG.Pofnterms]
=1x−y[S1+S2]ofaG.Pofnterms=1x−y[x2(1−xn)1−x−y2(1−yn)1−y]
Note it may also be noted that x3+y3x+y=x2−xy+y2x5+y5x+y
=x4−x3y+x2y2−xy3+y4 and xn+ynx+y=xn−1−xn−2y+...−xyn−2+yn−1 where n is 3,5,....i.e.odd.