y−xdydx=b(1+x2dydx). Solve the above differential equation.
A
y=k(y−b)(1+bx).
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
y=k(y+b)(1−bx).
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
y=k(y+b)(1+bx).
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
y=k(y−b)(1−bx).
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Ay=k(y−b)(1+bx). After rearranging the terms, we get y−b=dydx(bx2+x) dxx(bx+1)=dyy−b ∫bx+1−bxx(bx+1).dx=ln(y−b) ∫1x−bbx+1.dx=ln(y−b) ln(x)−ln(bx+1)+ln(c)=ln(y−b) cxbx+1=y−b