The correct option is B 4m(m+3)
Given:
52(m4−5m3−24m2)13m(m−8)
Consider the numerator, 52(m4−5m3−24m2)=2×2×13×(m4−5m3−24m2)
=2×2×13×m2(m2−5m−24) ...(i)
Comparing the expression
m2−5m−24 with the identity x2+(a+b)x+ab,(a+b)=−5 and ab=−24.
So, (−8)+3=−5 and (−8)(3)=−24
Hence, m2−5m−24=m2−8m+3m−24
=m(m−8)+3(m−8)
=(m+3)(m−8)
Substituting this in (i)
=2×2×13×m2(m−8)(m+3)
Therefore,
52(m4−5m3−24m2)13m(m−8)=2×2×13×m×m×(m−8)×(m+3)13×m×(m−8)
=2×2×m×(m+3)
=4m(m+3)