Let's assume the four parts be
a−3d,a−d,a+d,a+3d
Given, a−3d+a−d+a+d+a+3d=56
or 4a=56
or a=14
Give,
⇒(a−3d)(a+3d)(a−d)(a+d)=56
or, a2−9d2a2−d2=56
⇒6a2−54d2=5a2−5d2
⇒a2=49d2
⇒d2=14×1449
⇒d=±147
⇒d=±2
If d=±2 then four parts will be
14−6,14−2,14+2,14+6
8,12,16,20
If d=−2 then four parts will be
14+6 14+2 14−2 14−6
20,16,12,8
So, 4 numbers are 8,12,16,20.
Hence, the answer is 8,12,16,20.