Divide as directed.
(i)5(2x+1)(3x+5)÷(2x+1)
(ii)26xy(x+5)(y−4)÷13x(y−4)
(iii)52pqr(p+q)(q+r)(r+p)÷104pq(q+r)(r+p)
(iv)20(y+4)(y2+5y+3)÷5(y+4)
(v)x(x+1)(x+2)(x+3)÷x(x+1)
(i)5(2x+1)(3x+5)÷(2x+1)
=5(2x+1)(3x+5)(2x+1)
=5(3x+5)1
∴5(2x+1)(3x+5)÷(2x+1)=5(3x+5)
(ii)26xy(x+5)(y−4)÷13x(y−4)
=26xy(x+5)(y−4)13x(y−4)
=2y(x+5)(y−4)(y−4)
=2y(x+5)1
∴(x+5)(y−4)÷13x(y−4)=2y(x+5)
(iii)52pqr(p+q)(q+r)(r+p)÷104pq(q+r)(r+p)
=52pqr(p+q)(q+r)(r+p)104pq(q+r)(r+p)
=pqr(p+q)(q+r)(r+p)pq(q+r)(r+p)
=r(p+q)(q+r)(r+p)(q+r)(r+p)
=r(p+q)(r+p)(r+p)
=r(p+q)1
∴52pqr(p+q)(q+r)(r+p)÷104pq(q+r)(r+p)=r(p+q)
(iv)20(y+4)(y2+5y+3)÷5(y+4)
=20(y+4)(y2+5y+3)5(y+4)
=4(y+4)(y2+5y+3)(y+4)
=4(y2+5y+3)1
∴20(y+4)(y2+5y+3)÷5(y+4)=4(y2+5y+3)
(v)x(x+1)(x+2)(x+3)÷x(x+1)
=x(x+1)(x+2)(x+3)x(x+1)
=(x+1)(x+2)(x+3)(x+1)
=(x+2)(x+3)1
∴x(x+1)(x+2)(x+3)÷x(x+1)=(x+2)(x+3)