The correct option is A 3y4−4y2+5.
Now,(3y8−4y6+5y4)÷y4
=3y8−4y6+5y4y4
=3y8y4−4y6y4+5y4y4
=3y8−4−4y6−4+5y4−4 [aman=am−n,a≠0]
=3y4−4y2+5
3y4−3y3−4y2−4y by y2−2y
Divide the given polynomial by the given monomial (3y8−4y6+5y4)÷y4
Divide the given polynomial by the given monomial. (i)(5x2−6x)÷3x (ii)(3y8−4y6+5y4)÷y4 (iii)8(x3y2z2+x2y3z2+x2y2z3)÷4x2y2z2 (iv)(x3+2x2+3x)÷2x. [4 MARKS]