(i) (5x2−6x)÷3x
=5x2−6x3x
=x(5x−6)3x
=13(5x−6)
(ii) (3y8−4y6+5y4)÷y4
=3y8−4y6+5y4y4
=y4(3y4−4y2+5y)y4
=3y4−4y2+5
(iii) 8(x3y2z2+x2y3z2+x2y2z3)÷4x2y2z2
=8(x3y2z2+x2y3z2+x2y2z3)4x2y2z2
=8x2y2z2(x+y+z)4x2y2z2
=2(x+y+z)
(iv) (x3+2x2+3x)÷2x
=x3+2x2+3x2x
=x(x2+2x+3)2x
=12(x2+2x+3)
(v) (p3q6−p6q3)÷p3q3
=p3q6−p6q3p3q3
=p3q3(q3−p3)p3q3