The correct option is A 2, 4, 6 and 8
Let the four parts be a−3d,a−d,a+d and a+3d
Hence (a−3d)+(a−d)+(a+d)+(a+3d)=20
⇒4a=20
⇒a=5
According to the question
(a−3d)(a+3d):(a−d)(a+d)=2:3
⇒(a2−9d2)(a2−d2)=2:3
⇒a2−9d2a2−d2=23
⇒3(a2−9d2)=2(a2−d2)
⇒3a2−27d2=2a2−2d2
⇒3a2−2a2=27d2−2d2
⇒a2=25d2
⇒52=25d2
⇒25=25d2
⇒d2=1
⇒d=±1
Case (i): If d = 1
Hence (a-3d) = (5-3) = 2
(a-d) = (5-1) = 4
(a + d) = (5 + 1) = 6
(a + 3d) = (5 + 3) = 8
Hence the four numbers are 2, 4, 6 and 8.
Case (ii): If d = -1
Hence (a-3d) = (5 + 3) = 8
(a-d) = (5 + 1) = 6
(a + d) = (5-1) = 4
(a + 3d) = (5- 3) = 2
Hence the four numbers are 8, 6, 4 and 2.