We have, using distance formula √(x2−x1)+(y2−y1)
AB=√(−2−3)2+(−3−2)2=√25+25=√50
BC=√(2+2)2+(3+3)2=√16+36=√52
and AC=√(2−3)2+(3−2)2=√1+1=√2
Clearly,AB+BC>AC,AC+BC>ABandAB+AC>BC.
Therefore, points A,B and C form a triangle.
Also,BC2=AB2+AC2
Therefore, △ABC is a right triangle, right angled at A.