The correct option is D (−∞,−3)∪[−2,3]
f(x)=√9−x2√[x]+3=√9−x2[x]+3
⇒9−x2[x]+3≥0, [x]+3≠0
⇒x∉[−3,−2)
Case : 1
9−x2≥0, [x]+3>0
x∈[−3,3],x∈[−2,∞)
∴x∈[−2,3]....(1)
Case : 2
9−x2≤0, [x]+3<0
x∈(−∞,−3]∪[3,∞), x∈(−∞,−3)
⇒x∈(−∞,−3)....(2)
from (1) and (2)
x∈(−∞,−3)∪[−2,3]