The correct option is B none of these
Here, f(x)=1√4x−|x2−10x+9| would exist, if
4x−|x2−10x+9|>0
ie, |x2−10x+9|<4x,
where |x2−10x+9|={x2−10x+9x≤1 or x≥9−(x2−10x+9)1<x<9
Case I: When x≤1 or x≥9
∴x2−10x+9<4x
⇒x2−14x+9<0⇒(x−7)2<40
⇒x∈(7−√40,7+√40) (But x≤1 or x≥9)
⇒x∈(7−√40,1]∪[9,7+√40) .....(i)
Case II: When 1<x<9
−x2+10x−9<4x⇒x2−6x+9>0
⇒(x−3)2>0 which is always true except x={3}
∴x∈(1,9)={3}.....(ii)
From Eqs. (i) and (ii), domain of f(x)∈(7−√40,7+√40)−{3}
Hence, (d) is the correct answer.