Domain of the function f(x)=x2−3x+2x2+x−6 is:
Solve the inequation:
12+156x ≤ 5 +3x
and x∈R.
Given:
A= {x:11x−5>7x+3,x∈R} and
B= {x:18x−9≥15+12x,x∈R}.
Find the range of set A∩B.
Write each of the following subsets of R as an interval: (i) A={x:xϵR,−3<x≤5}
(ii) B={x:xϵR,−5<x≤−1}
(iii) C={x:xϵR,−2≤x<0}
(iv) D={x:xϵR,−1≤x≤4}
Find the length of each of the above intervals
Let U=R( the set of all real numbers ) If A={x:x∈R,0<x<2},B={x:x∈R,1<x≤3}, then