Let
¯a=3^i−5^k, ¯b=2^i+7^j,¯c=^i+¯j+^kLet ¯r=x^i+y¯j+z^k be the required vector.
Then, ¯r.¯a=−1,¯r.¯a=6,¯r.¯c=5
∴(x^i+y¯j+z^k).(3^i−5^k)=−1(x^i+y¯j+z^k).(2^i+7^j)=6 and
(x^i+y¯j+z^k).(^i+^j+^k)=5
∴3x−5y=−1...(1)
∴2x+7y=6...(1)
∴x+y+z=5...(1)
From (3), z=5−x−y
Substituting his value of z in (1), we get
∴3x−5(5−x−7)=−1
∴8x+5y=24...(4)
Multiplying (2) by 4 and subtracting from (4), we get
8x+5y−4(2x+7y)=24−6×4∴−23y=0∴y=0
Substituting y=0 in (2), we get
∴2x=6∴x=3
Substituting x=3 in (1), we get
∴3(3)−5z=−1∴−5z=−10∴z=2∴¯r=3^i+0.^j+2^k=3^i+2^k
Hence, the required vector is 3^i+2^k.