wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Draw a circle of radius 3.5 cm. Mark a point P outside the circle at a distance of 6 cm from the centre. Construct two tangents from P to the given circle. Measure and write down the length of one tangent.

Open in App
Solution

Tangents on the given circle can be drawn as follows.

Step 1

Draw a circle of 3.5 cm radius with centre as O on the given plane.

Step 2

Draw a circle of 6 cm radius taking O as its centre. Locate a point P on this circle and join OP.

Step 3

Bisect OP. Let M be the mid-point of PO.

Step 4

Taking M as its centre and MO as its radius, draw a circle. Let it intersect the given circle at the points Q and R.

Step 5

Join PQ and PR. PQ and PR are the required tangents.

Justification

The construction can be justified by proving that PQ and PR are the tangents to the circle (whose centre is O and radius is 3.5 cm). For this, let us join OQ and OR.

∠PQO is an angle in the semi-circle. We know that angle in a semi-circle is a right angle.

∴ ∠PQO = 90°

⇒ OQ ⊥ PQ

Since OQ is the radius of the circle, PQ has to be a tangent of the circle. Similarly, PR is a tangent of the circle.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Drawing Tangents to a Circle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon