Drawing quadrilateral.
Let points be A(−4,5),B(0,7),C(5,−5),D(−4,−2)
Area of quadrilateral ABCD=Area of △ABD+ Area of △BCD
Step :1 Finding Area of △ABD and Area of △BCD separately.
Calculating area of △ABD
Here
x1=−4,y1=5
x2=0,y2=7
x3=−4,y3=−2
Area of △ABD
=12|x1(y2−y3)+x2(y3−y1)+x3(y1−y2)|
=12|−4(7−(−2))+0(−2−5)+(−4)(5−7)|
=12|−4(7+2)+0−(4)(−2)|
=12|−4(9)+8|
=12|−28|
=12×28
=14
Calculating Area of △BCD
Here x1=0,y1=7
x2=5,y2=−5
x3=−4,y3=−2
Area of △BCD
=12|x1(y2−y3)+x2(y3−y1)+x3(y1−y2)|
=12|0(−5−(−2))+5(−2−7)−4(7−(−5))|
=12|0+5(−9)−4(7+5)|
=12|0−45−4(12)|
=12|−45−48|
=12|−93|
=932
Step 2: Area of quadrilateral
Now, Area of quadrilateral ABCD= Area of △ABD+ Area of △BCD
=14+932
=28+932
=1212
=60.5 square units.
Final answer :
Therefore, area of quadrilateral is =60.5 square units .