CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon


Question

Drive an expression for Electric field due to an Electric dipole at a point on the axial line.


Solution

Let the electric field at an axial point P at an distance $$r$$ from the center of the dipole be $$E_p$$.
Electric field at P, $$E_p = E_q - E_{-q}$$
Or $$E_p = \dfrac{kq}{(r-a)^2} - \dfrac{kq}{(r+a)^2}$$ where $$k = \dfrac{1}{4\pi \epsilon_o}$$
Or $$E_p = kq[\dfrac{1}{(r-a)^2} - \dfrac{1}{(r+a)^2}]$$
Or $$E_p = kq[\dfrac{(r+a)^2 - (r-a)^2}{(r+a)^2 (r-a)^2}]$$
Or $$E_p = kq[\dfrac{4ar}{(r^2-a^2)^2 }]$$
Or $$E_p = \dfrac{2kP r}{(r^2-a^2)^2 }$$ where $$P = 2qa$$
For $$r>>a$$, we can neglect $$a^2$$ compared to $$r^2$$.
We get $$E_p = \dfrac{2kP r}{r^4 }$$
$$\implies$$ $$E_p = \dfrac{2kP }{r^3 }$$

657586_623390_ans_73c4f9a37708463583c19208628849ae.png

Physics

Suggest Corrections
thumbs-up
 
0


similar_icon
Similar questions
View More


similar_icon
People also searched for
View More



footer-image