The correct option is B
16tan−1(3tanx2)+C
These types of integrals of the form ∫dxa+bsin2x or ∫dxa+bcos2x
are solved by multiplying sec2x in both numerator and denominator of the integrand and then substituting t=tanx.
So, for our integral multiplying sec2x in both numerator and denominator we get,
I=∫sec2x(4+5sin2x) sec2xdx
⇒I=∫sec2x dx4sec2x+5sin2x sec2x
⇒I=∫sec2x dx4(1+tan2x)+5tan2x⇒I=∫sec2x dx4+9tan2x
Now, if we assume t=tanx
we get dt=sec2xdx
So, our integral becomes I=∫dt4+9t2⇒I=19∫dt(23)2+t2⇒I=19×32tan−1(3t2)+C⇒I=16tan−1(3 tanx2)+C