The correct option is A −38tan−8/3x−32tan−2/3x+C
Here, both the exponents on sin and cosine (−113, −13) are negative and their sum is -4, which is an even number. Thus, we put t=tanx;⇒dxcos2x=dt
Now,I=∫dxsin11/3x cos1/3x⇒I=∫dxsin11/3xcos11/3xcos11/3x cos1/3x⇒I=∫dxtan11/3x cos4x⇒I=∫sec4x dxtan11/3x ⇒I=∫sec2x (1+tan2x) dxtan11/3x Now, substituting t=tanx,we get⇒I=∫(1+t2) dtt11/3 ⇒I=∫(t−11/3+t2−11/3)dt⇒I=∫(t−11/3+t−5/3)dt⇒I=−38t−8/3−32t−2/3+CSubstituting back t, we get:⇒I=−38tan−8/3x−32tan−2/3x+C