wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

dydx+2y=sin 3x

Open in App
Solution

We have,dydx+2y=sin 3x .....1Clearly, it is a linear differential equation of the form dydx+Py=Qwhere P=2 and Q=sin 3x. I.F.=eP dx =e2 dx = e2xMultiplying both sides of 1 by I.F.=e2x, we gete2x dydx+2y=e2xsin 3x e2xdydx+2e2xy=e2xsin 3xIntegrating both sides with respect to x, we gety e2x=e2xsin 3x dx+Cy e2x=I+C .....1Where, I=e2xsin 3x dx .....2I=e2xsin 3x dx-de2xdxsin 3x dxdxI=-e2xcos 3x3+23e2xcos 3x dxI=-e2xcos 3x3+23e2xcos 3x dx-de2xdxcos 3x dxdxI=-e2xcos 3x3+23e2xsin 3x3-23e2xsin 3x dxI=-e2xcos 3x3+2 e2xsin 3x9-49e2xsin 3x dxI=-e2xcos 3x3+2 e2xsin 3x9-49I Using 213I9=-e2xcos 3x3+2 e2xsin 3x9I=9132 e2xsin 3x9-e2xcos 3x3I=e2x132 sin 3x-3 cos 3x .....3From 1 and 3, we gety e2x=e2x132 sin 3x-3 cos 3x+Cy=31323sin 3x-cos 3x+Ce-2xHence, y=31323sin 3x-cos 3x+Ce-2x is the required solution.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometrical Interpretation of a Derivative
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon