wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

dydx=sin3 x cos4 x+xx+1

Open in App
Solution

We have,dydx=sin3 x cos4 x+xx+1dy=sin3 x cos4 x+xx+1dxIntegrating both sides, we getdy=sin3 x cos4 x+xx+1dxy=sin3 x cos4 x dx +xx+1dx y=I1 +I2 .....1 Here, I1=sin3 x cos4 x dxI1=xx+1dxNow, I1=sin3 x cos4 x dx =1-cos2 x cos4x sin x dxPutting t=cos x, we getdt=-sin x dx I1=-t4 1-t2dt =t6-t4dt =t77-t55+C1 =cos7 x7-cos5 x5+C1 I2=xx+1dxPutting t2=x+1, we get2t dt=dxI2=2t2-1t2dt =2t4-t2 dt =2t55-2t33+C2 =2x+1525-2x+1323+C2 Putting the value of I1 and I2 in 1, we gety=cos7 x7-cos5 x5+C1+2x+1525-2x+1323+C2 y=cos7 x7-cos5 x5+2x+1525-2x+1323+C C=C1+C2Hence, y=cos7 x7-cos5 x5+2x+1525-2x+1323+C is the solution of the given differential equation.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Special Integrals - 3
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon