wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

dydx + y cos x = sin x cos x

Open in App
Solution

We have, dydx+y cos x=sin x cos x .....1Clearly, it is a linear differential equation of the form dydx+Py=QwhereP=cos xQ=sin x cos x I.F.=eP dx =ecosx dx = esin xMultiplying both sides of 1 by esin x, we get esin xdydx+y cos x= esin xsin x cos x esin xdydx+esin xy cos x= esin x sin xcos x Integrating both sides with respect to x, we gety esin x= esin x sin xcos x dx+Cy esin x=I+C .....2whereI=esin x sin x cos x dxPutting t=sin x, we getdt=cos x dx I=etII tI dt =tetdt-ddttetdtdt =t et-et =ett-1 = esin xsin x-1Putting the value of I in 2, we gety esin x= esin xsin x-1+Cy=sin x-1+Ce-sin x Hence, y=sin x-1+Ce-sin x is the required solution.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Special Integrals - 3
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon