E and F are points on diagonal AC of a parallelogram ABCD such that AE = CF. Show that BFDE is a parallelogram.
Open in App
Solution
Consider ΔAEB&ΔCFD. AE = CF CD = AB ∠DCF=∠EAB ⇒ΔAEB≡ΔDCF(congruent) ⇒EB=DF⋯(1)&∠CDF=∠ABE−−−(1a) Similary ΔAED&ΔCFB are congruent. ∴AD=BC;AE=CF;∠DAE=∠FCB ⇒DE=FB−(2).&∠ADE=∠CBF−(2a) Now∠ADC=∠CBA(∵ABCDisparallelogram) ∠ADE+∠EDF+∠FDC=∠CBF+∠FBE+∠EBA ⇒∠EDF=∠FBE−(3) Similarly it can be proved that ⇒∠DEB=∠DFB−(4) From (1), (2), (3) & (4) ⇒ BDEF is a parallelogram