We have,
e(1+sin2x+sin4x+......∞)log2=16
⇒(1+sin2x+sin4x+.....∞)log2=log16
Now,
(1+sin2x+sin4x+.....∞) series is G.P.
So, First term
a=1
r(Commonratio)=sin2x1
r=sin2x
The sum of this series is
S∞=a1−r
=11−sin2x
=1cos2x
=sec2x
So,
sec2xlog2=log16
⇒sec2xlog2=log24
⇒sec2xlog2=4log2
Now comparing and we get,
sec2x=4
sec2x=22
secx=2
secx=secπ6
x=π6
Hence, this is the answer.