em=limx→0(sinxx)sinxx−sinx, then the value of m is
A
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
−1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B−1 limx→0(sinxx)sinxx−sinx=exp(limx→0sinxx−sinx(sinxx−1)) [ Using limx→a[f(x)]g(x)=exp(limx→ag(x)[f(x)−1])] as f(x)=sinxx→1 and g(x)=sinxx−sinx=sinxx1−sinxx→∞[ as x→0] =exp(limx→0sinxx)=e−1