ANSWER:
(b) x + y = 0
Given points: (-2, 2) , (0, 0) and (2, -2)
We have to check which equation satisfies the given points.
Let us check for (a) x - y = 0
Substituting (-2, 2) in the equation, we get: x - y = -2 -2 = -4
Substituting (0, 0) in the equation, we get: x - y = 0 - 0 = 0
Substituting (2, - 2) in the equation, we get: x - y = 2 + 2 = 4
So, the given points do not satisfy the equation.
Now, let us check (b) x + y = 0
Substituting (-2, 2) in the equation, we get: x + y = -2 + 2 = 0
Substituting (0, 0) in the equation, we get: x + y = 0 + 0 = 0
Substituting (2,-2) in the equation, we get: x + y = 2 - 2= 0
So, the given points satisfy the equation.
Similarly, we can check other equations and find that the given points will not satisfy the equations.
Hence, each of (-2, 2), (0, 0) and (2, -2) is a solution of the linear equation x + y = 0.