We have 2logb=loga+logc
or b2=ac .(1)
and 2[log2b−log3c]=log3c−log2b
or 3(log2b−log3c)=0
∴2b=3c .(2)
Solving (1) and (2) for a and b, we get a=9c/4, b=3c/2.
Thus the triple of numbers that satisfies the given conditions is 9c/4,3c/2,c(c≠0). Now a=9c/4,b=3c/2 and c will form a triangle if (i) a+b>c (ii)b+c>a and (iii) c+a>b.
But since a+b=15c/4>c,
b+c=5c/2>9c/4=a,
and a+c=13c/4>3c/2=b(c>0): a triangle with sides a, b and c exists and since a2>b2+c2, it is obtuse. To find the angles, we use the cosine formula.
Thus, cosA=b2+c2−a22bc=2948,
cosB=a2+c2−b22ac=6172
and cosC=a2+b2−c22ab=101108.
Thus, bearing in mind that A, B, C are the angles of a triangle, we get
A=cos−1(−2948)=π−cos−12948
B=cos−1(6172) and C=cos−1(101108).