The correct option is
C 4ϵoGiven, electric field E=−4xˆi+6yˆj. A cube of side 1m. We have to find the charge enclosed in a cube.
For surface BCGF, area =→A=(1×1)ˆi=ˆi
→E=−4xˆi+6yˆj
x=1= constant 0≤y≤1, 0≤z≤1
ϕ1=→E.→A=(−4xˆi+6yˆj).ˆi
=−4x=−4(1)=−4Nm2/C
For surface ADHE, →A=(1×1)(−ˆi)=−ˆi
→E=−4xˆi+6yˆj
x=0= constant
ϕ2=→E.→A=(−4xˆi+6yˆj).(−ˆi)
=4x=4(0)=0
For surface ABFE,
→A=(1×1)(−ˆj)=−ˆj
→E=−4xˆi+6yˆj
y=0= constant, 0≤x≤1, 0≤z≤1
So, dϕ3=→E.−→dA
=→E.(zdx)(−ˆj)
dϕ3=(−4xˆi+6yˆj)(zdx)(−ˆj)
dϕ3=−6z(0)=0
Similarly, for surface CDGE, ϕ4=0
For surfacev EFGH, →A=(1×1)ˆk=ˆk
ϕ5=→E.→A=(−4xˆi+6yˆj).ˆk=0
For surface ABCD, →A=(1×1)ˆ−k=ˆ−k
ϕ6=→E.→A=(−4xˆi+6yˆj).(ˆ−k)
Total flux =ϕ1+ϕ2+ϕ3+ϕ4+ϕ5+ϕ6
=−4Nm2/C
Now applying gauss' law, ϕ=qε0
−4=qε0
q=4ε0