Eliminate l,m between the equations lx+my=a, mx−ly=b, l2+m2=1.
Open in App
Solution
lx+my=a ....... (i)
mx−ly=b....... (ii)
l2+m2=1....... (iii)
Let's square(i), (ii) and add them
(lx+my)2=a2 (mx−ly)2=b2 (l2x2+m2y2+m2x2+l2y2)=(a2+b2) l2(x2+y2)+m2(x2+y2)=(a2+b2) (l2+m2)(x2+y2)=(a2+b2) Let l=cost,m=sint We know that cos2t+sin2t=1 So, given constraint on l,m is true. Thus, the eliminated equation is (x2+y2)=(a2+b2)