sinx+siny=a ...(1)
cosx+cosy=b ...(2)
tanx+tany=c ...(3)
⇒a2+b2=(sinx+siny)2+(cosx+cosy)2=2+2cos(x−y)=4cos2(x−y2) ...(4)
Also a=sinx+siny=2sin(x+y2).cos(x−y2)
From (4) and (5)
(a2+b2)2−4a2=16cos4(x−y2)−16sin2(x+y2)cos2(x−y2)
=16cos2(x−y2)cosxcosy
Again 2ab=2(sinx+siny)(cosx+cosy)=sin2x+sin2y+2sin(x+y)
=2sin(x+y).cos(x−y)+2sin(x+y)
=2sin(x+y)(cos(x−y)+1)=4sin(x+y)cos2(x−y2)
⇒8ab=16sin(x+y).cos2(x−y2) ...(7)
Dividing (7) by (6), we get
8ab(a2+b2)2−4a2=16sin(x+y).cos2(x−y2)16cos2(x−y2)cosxcosy=tanx+tany=c